
l?Ks< ^

Computer Science Department

TECHNICAL REPORT

TWO APPROACHES TO INTERPROCEDURAL

DATA FLOW ANALYSIS

By

MICHA SHARIR^-"-^ and AMIR PNUELI^^^

September 19 78

Report No. 00 2

NEW YORK UNIVERSITY

.J

8 Department of Computer Science

Courant Institute of Mathematical Sciences

251 MERCER STREET, NEW YORK, N.Y. 10012

TWO APPROACHES TO INTERPROCEDURAL

DATA FLOW ANALYSIS

By

MICHA SHARIR^^^ and AMIR PNUELI^^^

September 19 78

Report No. 00 2

^^ Courant Institute of Mathematical Sciences, New York University.
Work by this author has been supported by NSF Grant HCS-76-00116
and USDOE Office of Energy Research Contract EY-76-C-02-3077

.

(2) University of Pennsylvania and Tel Aviv University

1.2

run-time situation correctly , and in fact most of the graph paths

are not feasible, i.e. do not represent possible executions of the

program. However, this model is widely adopted for two main

reasons: (a) Its relatively simple structure enables us to develop

a comprehensive analytic theory, to construct simple algorithms

which perform the required program analysis and to investigate

general properties of these algorithms in detail (cf. [HE], [AU]

for recent surveys of the subject) . (b) Isolation of feasible

paths from non-feasible ones is known to be an undecidable problem,

closely related to the Turing machine halting problem.

This classical technique faces significant problems in the

presence of procedures. These problems reflect the dependence of

individual inter-procedural branches upon each other during program

execution, a dependence which is known at compile time and is

essentially independent of any computation performed during that

execution. Interprocedural branching is thus much easier to

analyze than intra-procedural branches, which usually depend on

the values assumed by various program variables. It is therefore

very tempting to exploit our special knowledge of this branching
pattern in program analysis, thereby tracing the program flow in

a more accurate manner.

Interprocedural flow cannot be treated as a simple extension
of the intra-procedural flow, but calls for a more complicated
model whose mathematical properties require special analysis. In

addition, many programming languages include features such as

procedure variables, and parameter transfer by reference or by
name (cf. [AU]) which complicate the analysis of inter-procedural

flow.

1.3

It is therefore not surprising that inter-procedural analysis

has been neglected in much research on data-flow analysis. Most

of the recent literature on this subject virtually ignores any

inter-procedural aspect of the analysis, or splits the inter-

procedural analysis into a preliminary analysis phase which gathers

over-estimated information about the properties of each procedure

in a program and which is followed by an intra-procedural analysis

of each procedure, suppressing any inter-procedural transfer of

control and using instead the previously collected, over-estimated

information to deduce the effects of procedure calls on the program

behavior (cf. [AL2]). These approaches use a relatively simple

model of the program at the expense of some information loss,

arguing that such a loss in intrinsic anyway even in a purely

intra-procedural model.

However, there is a growing feeling among researchers that

more importance should be given to inter-procedural analysis,

especially in deeper analyses with more ambitious goals, where

avoidance of flow over-estimation is likely to be significant in

improving the results of the analysis. This is true in particular

for analyses related to program verification, in which area

several recent papers, notably [DM], [GR] , [HA], [GA] and [CO]

have already addressed this issue. We may also mention several

recent works by Rosen [RO] , Barth [BA] and Lomet [LO] , which

outline some inter-procedural approaches to global data-flow

analysis.

In this paper we introduce two new techniques for performing

inter-procedural analysis of a program as an integral part of its

1.4

global flow analysis. These two approaches use two somewhat

different graph models for the program being analyzed. The first

approach, which we term the functional approach views procedures

as collections of structured program blocks, and aims to establish

input-output relations for each such block. One then interprets

procedure calls as "super operations" whose effect on the program

status can be computed using those relations. This approach

relates rather closely to most of the known techniques dealing with

interprocedural flow, such as the "worst-case assumptions," mixed

with processing of procedures in "inverse invocation order" [AL2]

Rosen's "indirect arcs" method [RO] , in-line expansion of pro-

cedures [AL3] , as well as most of the known interprocedural tech-

niques for program verification ([GR] , [GA] , [HA] and [CO]). Our

version of this first technique has the advantage of being rather

simple to define and implement (admitting very efficient implementa-

tions for several important special cases) , and is valid even in

the presence of recursion. The above mentioned previous approaches

to this situation are either much more complicated, or yield only

approximate solutions.

Ovir second technique , which we term the call-strings approach

is somewhat orthogonal to the first approach. This second technique

blends inter-procedural flow analysis with the analysis of intra-

procedural flow, and in effect turns a whole program into a single

flow-graph. However, as information is propagated along this graph,

it is "tagged" with an encoded history of the procedure calls

encountered during propagation. In this way we make inter-

procedural flow explicit, and this enables us to determine, when-

ever we encounter a procedure return, what part of the information

1.5

at hand can validly be propagated through this return, and what

part has a conflicting call history, that bars such propagation.

Surprisingly enough, very few techniques using this kind of

logic have been suggested up to now. We may note in this connec-

tion that a crude approach, but one using similar logic, would be

an approach in which procedure calls and returns are interpreted as

ordinary branch instructions. Even though the possibility of such an

approach has been suggested occasionally in the literature, it has

never been considered seriously as an alternative inter-procedural

analysis method. A related approach to program verification has been

investigated by De-Bakker and Meertens [DM] , but, again, this has

been quite an isolated attempt, and one having rather discouraging

results, which we believe to be due mainly to the ambitious nature

of the analyses considered.

We shall show that an appropriate sophistiaction of this

approach is in fact quite adequate for data-flow analysis, and gives

results quite comparable with those of the functional approach.

This latter approach also has the merit that it can easily be

transformed into an approximative approach, in which some details

of interprocedural flow are lost, but in which the relevant al-

gorithms become much less expensive.

A problem faced by any inter-procedural analysis is the

possible presence of recursive procedures. The presence of such

procedures causes inter-procedural flow to become much more com-

plex than it is in the non-recursive case, mainly because the

length of a sequence of nested calls can be arbitrarily large.

Concerning our approaches in this case, we will show that they

1.6

always converge in the non-recursive case, but may fail to yield

an effective solution of several data-flow problems (such as con-

stant propagation) for recursive programs. It will also be seen

that much more advanced techniques are needed if we are to cope

fully with recursion for such problems.

We note that it is always possible to transform a program

with procedures into a procedureless program, by converting pro-

cedure calls and returns into ordinary branch instructions,

monitored by an explicit stack. If we do this and simply siibject

the resulting program to intra-procedural analysis, then we are in

effect ignoring all the delicate properties of the inter-

procedural flow and thus inevitably over-estimating flow. This

simple observation shows that the attempt to perform more accurate

inter-procedural analysis can be viewed as a first (and relatively

easy) step toward accurate analysis of more sophisticated pro-

perties of programs than are caught by classical global analysis.

This paper is organized as follows: Section 2 contains pre-

liminary notations and terminology. Section 3 presents the func-

tional approach, first in abstract, definitional terms, and then

shows that it can be effectively implemented for data-flow prob-

lems which possess a finite semilattice of possible data values,

and sketch an algorithm for that purpose. We also discuss several

cases in which unusually efficient implementation is possible.

(These cases include many of those considered in classical data-

flow analyses)
. Section 4 presents the call-strings approach in

abstract, definitional terms showing that it also yields the

solution we desire, though in a manner which is not necessarily

effective in the most general case. in Section 5 we show that

1.7

this latter approach can be effectively implemented if the semi-

lattice of relevant data values is finite, and investigate some of

the efficiency parameters of such an implementation. Section 6

presents a variant of the call strings approach which aims at a

relatively simple, but only approximative, implementation of

interprocedural data-flow analysis.

We would like to express our gratitude to Jacob T. Schwartz

for encouragement and many helpful suggestions and comments con-

cerning this research.

2.1

2 . Notations and Terminology

In this section we will review various basic notations and

terminology used in intra-procedural analysis, which will be re-

ferred to, and modified, subsequently. The literature on data-

flow analysis is by now quite extensive, and we refer the reader

to [HE[or [AU] , two excellent recent introductory expositions of

that subject.

To analyse a program consisting of several subprocedures , each

subprocedure p, including the main program, is first divided

into basic blocks . An (extended) basic block is a maximal single-

entry multi-exit sequence of code. For convenience, we will assume

that each procedure call constitutes a single-instruction block.

We also assume that each subprocedure p has a unique exit block,

denoted by e , which is also assiimed to be a single-instruction

block, and also that p has a unique entry (root) block, denoted

^y ^p-

Assume for the moment that p contains no procedure calls.

Then the flow-graph G of p is a rooted directed graph whose nodes

are the basic blocks of p, whose root is r , and which contains

an edge (m,n) iff there is a direct transfer of control from the

basic block m to (the start of) the basic block n, effected by

some branch instruction. The presence of calls in p induces sev-

eral possible inter-procedural extensions of the flow-graph,

which will be discussed in the next section.

2.2

Let G be any rooted directed graph. G is denoted by a triplet

(N,E,r) where N is the set of its nodes, E the set of edges and

r its root. A path p in G is a sequence of nodes in N

(n, ^n-/ . . • /H,) such that for each 1 £ j < k, (n. ,n. ,) e E. p is

said to lead from n, (its initial node) to n, (its terminal node)

.

p can be also represented as the corresponding sequence of edges

((n, ,n2) / . . . , (n, _, ,n,)) . The length of p is defined as the number

of edges along p (k-1 in the above notation) . For each pair of

nodes m, n e N we define path (m,n) as the set of all paths in G,

leading from m to n.

We assume that the program to be analyzed is written in a

programming language with the following semantic properties:

Procedure parameters are transferred by value, rather than by

reference or by name (so that we can, and will, ignore the problem

of "aliasing" discussed by Rosen [RO]) and there are no procedure

variables or external procedures. We also assiime that the program

has been translated into an intermediate-level code in which the

transfer of values between actual argtunents and formal parameters

of a procedure is explicit in the code and is accomplished by

argument-transmitting assignments, inserted before and after pro-

cedure calls. Because of this last assumption, formal parameters

can be treated in the same way as other global variables. All

these assumptions are made in order to simplify our treatment and

are rather reasonable. If the first two assiimptions are not sat-

isfied then things get much more complicated, though not beyond

control. The third assumption is rather arbitrary but most con-

venient. (In ICO], e.g., the converse assumption is made, namely

2.3

that global variables are passed between procedures as parameters,

an assumption which we believe to be less favorable technically.)

A global data-flow framework is defined to be a pair (L,F)

,

where L is a semilattice of data- or attribute-information and F

is a space of functions acting in L (and describing a possible

way in which data may propagate along program flow). LetA denote

the semilattice operation of L (called a meet) , which is assumed

to be idempotent, associative and commutative. We assume that L

contains a smallest element, denoted by (usually signifying

null information (see below) . F is assumed to be closed under

functional composition and meet, to contain an identity map, and

to be monotone , i.e. to be such that for each f e F, x, y e L,

X <_ y implies f(x) <_ f(y). L is also assumed to be bounded , i.e.

not to contain any infinite decreasing sequence of distinct ele-

ments. (L,F) is called a distributive framework if, for each

f e F and x, y e L, f (x a y) = f (x) A f (y)

.

Given a global data-flow framework (L,F) and a flow graph G,

we associate with each edge (m,n) of G a propagation function

f / X e F, which represents the change of relevant data-attributes

as control passes from the start of m, through m, to the start of

n. (Recall that a basic block may have more than one exit, so that

f ,_ . must depend on n as well as m.
(ni,n)

Once the set S = {f, . : (m,n) e E} is given, we can define
\iu , n ^

a (graph-dependent) space F of propagation functions as the

smallest set of functions acting in L which contains S and the

identity map, and which is closed under functional compositions

and meets. It is clear that this F is monotone iff S is monotone.

2.4

and that F is distributive iff S is distributive.

Once F is defined, we can formulate the following general set

of data-propagation equations, where, for each n e N, x denotes

the data available at the start of n:

x^ =

(2.1)

x_ =

These equations describe attribute propagation "locally,"

i.e. they show the relation between attributes collected at adja-

cent basic blocks, starting with null information at the program

entry.

The solutions of these equations approximate the following

abstractly defined function known as the meet over all paths

solution to an optimisation problem

(2.2) y„ = A ^f (0) : P e path„(r,n) } , n e N ;n p Kj

here we define f=f, xof, ,...of, . for
p (n,,_i^nj^) (nj,.2^nj^_^) (n^^n^)

each path p = (n, ,n2 , . . . ,n,) . If p is null, then f is defined

to be the identity map on L.

Many algorithms which solve equations (2.1) are known by now.

These algorithms fall into two main categories: (i) iterative

algorithms, which use only functional applications (cf. [KI]

,

[HU] , [KU2] , [HE], [TAl]). (ii) elimination algorithms, which

also use functional compositions and meets (cf. [CA] , [GW] , [TA2])

All these algorithms yield the maximal fixed point solution to

equations (2.1), which does coincide with the solution (2.2)

2.5

provided that the data-flow framework in question is distributive

[KI] , but which may fail to do so if the framework is only mono-

tone [KUl] . However, in which case, even in this latter case we

still have x < y for all n e N, i.e. obtain an under-estimated
n — -* n

solution, which is always a safe one (cf. [HE]). In what follows,

we will assume some basic knowledge of these classical optimisation

algorithms.

3.1

3. The functional approach to interprocedural analysis

In this section we present our first approach to interpro-

cedural analysis. This approach treats each procedure as a struc-

ture of blocks, which establishes relations between attribute data

at its entry and related data at any of its nodes. Using these

relations, attribute data is propagated directly through each

procedure call.

We prepare for our description by giving some definitions and

making some observations concerning the inter-procedural nature

of general programs. Let us first introduce the notion of an

interprocedural flow graph of a computer program containing sev-

eral procedures. We can consider two alternative representations

of such a graph G. In the first representation, we have G =

U {g : p is a procedure in the program}, where, for each p,

G = (N ,E ,r) , and where r is the entry block of p, N is the
p ^ p' p' p'

'

p
^ ^ P

set of all basic blocks within p, and E = E° u e is the set of
Sr C ST

edges of G . An edge (m,n) e E° iff there can be a direct trans-
' P P

fer of control from m to n (via a 'go-to' or 'if statement,

and {m,n) e E iff m is a call block and n is the block immediately
P

following that call.

Thus this representation, which is the one to be used ex-

plicitly in our first approach, separates the flow graphs of

individual procedures from each other.

A second representation, denoted by G*, is defined as follows:

G* = (N*,E*,r,) , where N* = ^ N , and E* = E° U E"^, where E° =

u E° and an edge (m.n) e E iff either m is a call block and n is

P
P

3.2

the entry block of the called procedure (in which case (m,n) is

called a call edge) , or if m is an exit block of some procedure p

and n is a block immediately following a call to p (in which case

(m,n) is called a return edge) . The call edge (m,r) and a return

edge (e ,n) are said to correspond to each other if p=q and

(m,n) e E , for some procedure s. Here r-, is the entry block of

the main program, sometimes also denoted as
^j^jg^n*

Of course, not

all paths through G* are (even statically) feasible, in the sense

of representing potentially valid execution paths, since the

definition of G* ignores the special nature of procedure calls and

returns. For each n e N* we define IVP(r-,,n) as the set of all

inter-procedurally valid paths in G* which lead from r, to n. A

path g e pathg^(r,,n) is in IVP(r,,n) iff the sequence of all

^1

proper in the following recursive sense:

(i) A tuple q-, which contains no return edges is proper.

(ii) If q, contains return edges, and i is the smallest index in

q, such that q-i (i) is a return edge, then q, is proper if

i>l and q, (i-1) is a call edge corresponding to the return

edge q-,(i), and after deleting those two components from q,,

the remaining tuple is also proper.

Remark ; It is interesting to note that the set of all proper

tuples over E , as well as u iVP(r,,n), can be generated by a
n

context-free grammar (but not by a regular grammar) , in contrast

with the set of all possible paths in G* , which is regular.

For each procedure p and each n e N , we also define

rVP (r ,n) as the set of all interprocedxirally valid paths q in

edges in q which are in E , which we will write as q, or q

3.3

G* from r to n such that each procedure call in q is completed

by a subsequent corresponding return edge in q. More precisely,

1 is complete
,

in the following recursive sense.

a path q e path ^ (r ,n) is in IVP (r ,n) iff q^ = q
E

(i) The null tuple is complete.

(ii) A tuple q, is complete if it is either a concatenation of two

complete subtuples, or else it starts with a call edge,

terminates with the corresponding return edge, and the rest

of its components constitute a complete subtuple.

The notions introduced above appear in the following Path

Decomposition Lemma:

Lemma 3.1; Let n e N* and q e IVP (r, ,n) . Then there exist pro-

cedures Pt ,Pt, . . . ,p • , where p, is the main program and p.. the pro-

cedure containing n, and calls c,,...,c._, such that for each i<j

c- is in p. and calls P-,-i» and q can be represented as

(3.1) q = q3_||(c^,rp)|Iq2l I

• • •
I Kcj^i^r^)

| (q^

where for each i<j q. e IVP^Cr ,c.) and q. e IVP^(r ,n)

.

-' ^1 o p^ 1 ^j o Pj

Conversely, any path which admits such a decomposition is in

IVP(r,,n). Moreover, this decomposition is unique.

Proof ; Let q* = q -i • If q* is empty, then q* is also complete,
E

so that q e IVP (r, ,n) , and we have the trivial decomposition

q=q with j=l (n must belong to the main program in this case)

.

Otherwise, in view of the definition of a proper E -tuple,

and by making repeated deletions of adjacent call edges and

corresponding return edges, we can reduce q* to a tuple q** which

3.4

is either a null tuple or a non-empty tuple containing only call

edges. Let j = length of q** + 1. If j=l/ i.e. if q** is empty,

it is readily seen that q* is complete and that n belongs to the

main program, and we have again the trivial decomposition q=q.

If j > 1, let c. = q** (i) (1) , i=l,...,j-l, and put p, = main

program, P-,-, = the procedure called from c., i=l,...,j-l. In view

of the way in which q** was obtained from q, it follows that c. is

in p. for each i < j. Let m^=l and m. be the original index of1 "^ o 1

q**(i) in q, i=l,...,j-l. Then we have the decomposition q =

qil I
(Cj_,rp) I Iq2. . .

I I (Cj_i'^p.) I kj where q^ = q {m^_^+l :m^-l) ,

1=1,..., j-1, and q. = q(m. ^+1:).' It is easily verified that

^i , is complete for each i<j , and therefore q. e IVP (r ,c.)gl ^ -^' ^1 o' p^' i'

for i<j and q. e IVP (r ,n)

.

^ ^ j o p

.

The proof of the converse assertion is simpler, and follows

directly from the definitions of IVP and IVP .

The viniqueness of this decomposition is also easy to estab-

lish, since c^^ , . . . ,c .^^ are precisely all the calls along q which

are net subsequently completed, and it is fairly obvious from the

definitions that these calls and their positions in q are unique,

which immediately implies the uniqueness of the whole decomposition.

Q.E.D.

We can now describe our 'functional' approach to interproce-

dural analysis. Let (L,F) be a distributive data-flow framework

for G. In the first phase of the functional approach we take F

(*)
footnote ; for any tuple or string a, a(i:j) denotes its sub-

part from the i-th component to the j-th one, inclusive; a(i:)
denotes the subpart of a from the i-th component to its end.

3.5

as the direct basis for our analysis. More precisely, for each
procedure p and each n e N^, we define an element

0^^ ^ e F
Which describes the manner in which attributes in L I^e^propagated
from the start of r^ to the start of n along paths in IVP^(r ,n)

.

These functions must satisfy the following (non-linear) sit of
equations, whose heuristic meaning should be self-explanatory:
For each (m,n) e E°, let f

^^^^^ e F denote the associated propa-
gation effect. Then

Mr ,r)
^ id f for each procedure p

(3.2) P' p' -^

(rp,n) (m,n)eE ^"^(m^n) ° "^(r ,ra) ^ ' ^°^ each n e N - {r }f p P P

where

(m,n)

^^(m,n) if (ni,n) c E°

^^''q'^g) ""^ ^""'""^ ^ ^P
^""^ "" ""^^^^ procedure q

This set of equations possesses a maximal fixed point solution
which is defined as follows: Let F be ordered by writing g^ >

g^
for g^, g^ e F iff g^ (x) > g^ (x) for all x c L. (We will assume
that L contains a maximal element n which denotes a totally unde-
fined attribute, and that F contains a function f^ which maps
each X e L into ^, so that f^ is the largest element in F.)

Start by putting

o

-p'-p'*(r^,r„) ~
^"^L'

f°^ ^^^^ procedure p

*°
(r n) " f«' fo^ each n e N - {r }

ir XT hr

3.6

and then apply Equations (3.2) iteratively in a round robin fashion

to obtain new approximations to the <i>'s, (This can be done using

iterations either of Gauss-Seidel type of Jacobi ' s type, though the

former is a better approach.) Let <t>^, denote the i-th approx-

imation computed in this manner. Since 4°
s >

<t>'^, . for all^(r ,n) -^(r ,n) "^ ^-^-^

p, n, it follows inductively that (j)) > <t>]t^ , for each p, n

and i >_0

.

A problem which arises here is that F need not in general be

a bounded semilattice, even if L is bounded. If L is finite then

F must be finite and therefore bounded, but if L is not finite, F

need not in general be bounded.

Nevertheless, even if the sequence {(})^, ,}. „ is infinite for(r ,n) 3>_0

some p, n we still can define its limit, denoted by o , . , as
^(rp,n) '

follows: For each x e L, the sequence {({>^ \(x)}.^- is decreas-
l i , n ; J >y

ing in L, and since L is bounded, it must be finite, and we define

*/_ „s (x) as its limit. (To ensure that <i>

,

, c F we must

impose another condition upon F, namely: for each decreasing

sequence
^gj_^j_>o

of functions in F, the limit defined as above is

also in F.) Thus, the above process defined a solution

^*(r ,n)^p,n ^° equations (3.2) though not necessarily effectively.

It is easy to check that the limiting functions defined by the

iterative process that we have described are indeed a solution,

and that in fact it is the maximal fixed point solution of (3.2).

Having obtained this solution, we can use it to compute a

solution to our data-flow problem. For each basic block n let

x^ e L denote the information available at the start of n. Then

we have the following set of equations:

3.7

(a) x^ = e L
main

(3.3) (b) for each procedure p,

x^ = AH(2: c) (^r
^' *3 ^2 ^ procedure and

^ ^' ^ c is a call to p in q}

(c) ^n ~ *^ fr n) ^^ ^ ' ^°^ each procedure p, and
P' ""P n e N - {r„}

P P

These equations can be (effectively) solved by a standard iterative

algorithm, which yields the maximal fixed point solution of (3.3).

We illustrate the above procedure for solution of equations

(3.2) and (3.3) by the following example, in which we suppose

that available expressions analysis is to be performed:

Example 1

mam program

read a, b;

t := a*b;

call p;

t := a*b;

print t

;

stop;

end;

procedure p

if a = then return;

else

a := a - 1;

call p;

t := a*b;

end if

;

retxirn;

end;

Our interprocedural analysis will show that a*b is available

upon exit from the recursive procedure p, so that its second

computation in the main program is redundant and can therefore

be eliminated. (Traditional inter-procedural methods will usually

fail to detect this fact, since the expression a*b is killed in p.)

3.8

We now exhibit the details of the iterative solution of equa-

tions (3.2) and (3.3) for this above program P. Our first solution

step transforms P into the following interprocedural flow graph

(where solid arrows denote intra-procedural edges, dotted arrows

denote edges in u e , and dashed arrows denote interprocedural
P ^ 1edges, i.e. edges in E)

:

n.

read a,b

t := a*b

jvk_

call p

_iZ.

t := a*b

print t
<--

stop

-->
/7

/ .

3.9

^ir2,^2^ - *(r2,e2)° *(r2,C2)

4-
{r2,e2) = 1(0, Do *(.,.) ^AE d.D o *(.]

The following table summarizes the iterative solution of these

equations

:

function initial value after 1

iteration

2 iterations 3 iterations

Mr,,r,:

3.10

For these equations we see after two iterations that

X = X =0

from which, using (3.3) (c) , we obtain the complete solution

r^ r2 C2 n^ e^

^1 "l ®1

i.e. a*b is available at the start of n^ , which is what we wanted

to show.

Next we shall analyze the properties of the solution of

equations (3.2) and (3.3) as defined above. As in intra-procedural

analysis our main objective is to show that this solution coincides

with the meet over all paths solrtion defined (in the interproce-

dural case) as follows:

(3.4) ^l,^ = /\{f :q e IVP (r n) } e F, for each n e N*

(3.5) y^ =
'^n^*^^'

^°^ ®^^^ n e N* (this is the meet over all paths
solution)

.

Lemma 3.2 ; Let n e N for some procedure p. Then

*(rp,n) = A^fq: q e IVP^(rp,n)}

Proof: We first prove, by induction on i, that for all i>_0

*^,n) ^ A^fq: q e IVP^(rp,n)}

Indeed, for i=0, if n=rp then *°^ ^^ ^
= id^ = f , where

P' P *^o

^^o ^ ^^^o^^p'^p) is the empty path from r to r , so that
P P

Up,rp) t A(f,= q e IVP^(rp,rp)}. if n^r^ then °^^^„, = f„ > f

3.11

for all f e F. Thus the assertion is true for i=0.

Suppose that it is true for some i. For either kind of

iterative computation of the functions <^^ using equations (3.2)

we have

>
/ ^or. (h, ,° A{f : q e IVP^(r^,m)})

- (m,n)GE (m,n) q op

for each procedure p and n c N - {r }. (Note here that if n = r ,

^^^^ *(r' n) = *(r .n) = ^%.n) i %-- ^ ^ ^^^o^^p'^^^' °^^
Cr IT IT

chain of equalities and inequalities then continues:)

/>^,1 (*(r^.,e„.)° A^fq: q e IVP^(rp,m)})
(m,n)eE^ P ' p

m calls p

' P

(m,n)eEl (^{fg.: q' e IVP^ (r^ . ^e^,)
}o A (fgi q c IVP^(rp,m)})

m is a call
to p'

= A o
^A^fq||(m,n)= g ^ IVP^(rp,m)})A

(m,n)eE

(ir.,n)eEl ^^ ^^q
I

|(in,rp
.)

[|q '

| |
(e^

. ,n) = ^ ^ IVP^^^p'"^)'

m is a call q' g lyp (r .,e .)})
to p o P P

It is easily checked that for each function f appearing in the

3.12

last right-hand side, q^ e IVP^(r ,n). Hence, this last right-

hand side must be

> {fgi q e IVP^(rp,n)}

The same inequality is then seen to apply to the limit function

To prove inequality in the other direction, we will show that

for each q e IVPQ(rp,n), f^ i <!>

(j. ^^y This will be proven by

induction on the length of q. If this length is then n must be

equal to r^ and f^ = (p^^ ^^ ^
= id^^. Suppose that the assertion

is true for all p, n and all q e IVP^(r ,n) whose length <_ k, and

let there be given p, n, q such that the length of q is k+1. Let

(m,n) be the last edge in q, so that we can write q = q [1
(m,n)

.

If (m,n) e E^ then q^ e IVP^(r ,m) and its length is <_ k.

Therefore f i */_ . and by (3.2) we have

^q = ^(m,n)° fq3_ > h(m,n)° *(rp,m) i *(rp,n)

If (m,n) e E , then m = e , for some procedure p'. It is

easily seen from the definition of IVP^, that q can be decomposed

as q^l I
(m^,rp,)

I Iq^l I
(ep,,n) , such that {m^,n) e E""-,

q, c IVP„(rp,.,). gj e IVP„(rp,,ep,). Since f,^^,,^,, , „,p,,„, ,

id^ (since m^ and e^, are single instruction blocks, containing

only an interprocedural branch instruction) , we have

f„ = f^ ° f
q q2 qi

But both q^ and q^ have length _< k, so that by (3.2) and the in-

duction hypothesis, we obtain

3.13

This proves our assertion, from which the lemma follows immediately.

Q.E.D.

Let us now define, for each basic block n.

3 Pj.l'^3-1' ^^P,

Pj^ - main program, p. is the procedure containing n,

and for each i<j c^ is a call to p._j_, from p.}

(3.7) z = V (0)n ^n ^
'

Theorem 3.3 ; i])^ = x^^ for each n e N*

.

Proof: Let q e ^'^^
(^main'^^ ' ^^ Lemma 3.1 q admits a decomposi-

tion q = gil|(c^,rp) llq^ll...! I(Cj_i,rp) Hq^ as in (3.1), i.e.

there exist procedures
p^^

= main program, p , ..., p. = the pro-

cedure containing n, and calls Cj_,...,c._^ such that for each i<j

c^ is a call to p^^^^ from p^, and q^ e IVPQ(r ,c^), and also

^j ^ ^^^o^^p.'^^-

Thus , by Lemma 3.2, we have

q qj qj.i ^i
- '(^p.^^) ^(^p._^'^j-i)

° ••• ° ^r^^^c^^)

1 Xn

Hence , ii > Y .n — '^n

Conversely, let Pj^, . . . ,Pj ,c^, . . . ,c .

j^
be as in (3.6). By

lemma 3 . 2 we have

3.14

'^{r ,n)'' *(r ,c. ,)° •'• °<^(r ,c,)

"

Pj Pj-1 ^ ^1

A{f of o...of :q.e IVP_ (r ,c.) for each i<j and
'^ qj qj_i ^^i

^1 o Pi 1

q. C IVP^Cr ,n)}

= {f
I I

, .11
I I

, \
I I

• same as above}

By Lemma 3.1, each concatenated path in the last set expression

belongs to IVP (r . ,n) . Thus, the last expression is

> A {f : q e IVP (r^^i^,n) } = ^^

Therefore x ^ i> so that y and i) are equal for each n e N*

.

'^n — n '^n n

Q.E.D.

We can now prove our main result:

Theorem 3.4: For each basic block neN*,x =y =z.
n n n

Proof: It is immediate from Theorem 3.3 that y = z for each
n n

n e N* . We claim that x = ^ for all procedures p in the
^P P

program. By (3.3) (c), (3.6) and (3.7) this will imply that

X = z for all n.
n n

To prove our claim, we define a new flow graph G = (N ,E ,r,)

,

c C C 1

where :N is the set of all entry blocks and call blocks in the

program.

E = E° + E is the set of edges of G . An edge (m,n) e E„
c c c c c

iff m is the entry of some procedure p and n is a call within p.

Moreover, (m,n) e E iff m is a call to some procedure p and n

is the entry of p. As before, ^-^ is the entry block of the

main program. We now define a data-flow problem for G by associa-

ting a data-propagating map g, \ ^ ^ with each (m,n) e E , in

3.15

such a way that

,o

^(m,n)

*(m,n)
i^ ^^'^^ ^ ^c

idj^ if (ni,n) e E^

It is clear that equations (3.3) (a), (3.3) (b) are equivalent to

the iterative equations for the new data-flow problem. On the

other hand, equations (3.6) and (3.7) define the meet over all

paths solution for the same problem, if we substitute only entry

blocks or call blocks for n. Since F is assumed to be distribu-

tive, it follows by Kildall's theorem [KI] , that x = z for
P ^P

each procedure p, and this completes the proof of our theorem.

Q.E.D.

It is now time to discuss the pragmatic problems that will

affect attempts to use the fxinctional approach to interprocedural

analysis that we have sketched. The main problem is, obviously,

how to compute the 4)'s effectively if L is not finite (or if F is

not bounded) . As examples below will show, in the most general

case the functional approach does not and cannot yield an effective

algorithm for solving equations (3.2) and (3.3). Moreover, even

if the iterative computation of the <|> ' s converges, we must still

face the problem of space needed to represent these functions.

Since the functional method that we have outlined manipulates the

(j> ' s directly, instead of just applying them to elements of L, it

can increase the space required for data-flow analysis if L is

finite, and may even fail to give finite representation to the (fi's,

if L is infinite. We note here that our functional approach

belongs to the class of elimination algorithms for solving data-

flow problems (a class of methods which includes the interval-

3.16

oriented algorithms of Cocke and Allen [CA] , and Tarjan's fast

elimination algorithms [TA2]), since it uses functional compositions
and meets in addition to functional applications. All such elimina-
tion algorithms face similar problems, and in practical terms are

therefore limited to cases in which the elements of F possess some

compact and simple representation, and in which F is a bounded semi-

lattice. This family of cases includes the classical data-flow prob-
lems (i.e. analysis for available expressions, use-definition

chaining, etc.; cf. [HE]).

It is interesting to ask whether it is possible to modify the

functional approach so that it avoids explicit functional composi-
tions and meets, and thus becomes an iterative approach. This is

possible if L is finite, and an implementation having this property
will be sketched below.

The following example will illustrate some of the pragmatic

problems noted above, and also some potential advantages of the

functional approach over any iterative variant of it. Suppose that
we want to perform constant propagation (see e.g. [HE] for a des-

cription of the standard framework used in this analysis) . Consider
the following code

:

Example 2

main program procedure p

^ •= °' if cond then

call P; A := A+1;

print A; call p;

end; A := A-1;

end if;

return; end;

3.17

If we do not allow symbolic representation of the (j>'s, then,

in any iterative approach, we shall have to compute (}) , >({(A,0)})
^^p'^p)

for which we need to compute (for the second level of recursion)

*(r ,e
)(nA,l)}) etc., computing ^. <({(A,k)}) for all integers

P P
_

P P
k >_ 0. Thus, an iterative approach would diverge in this example.

However, if symbolic or some other compact representation of

the 4)'s is possible, then it can be advantageous to manipulate

these functions directly, without applying them to elements of L

till their final value has been obtained. This can give us an

overall description of their behaviour, allowing them to be calcu-

lated in relatively few iterations. For example, in the example

shown above, it is easily checked that <|) , ^ v is found to be id.
P' P^

^
after two iterations

.

However, convergence of the purely functional approach is not

ensured in general. To see this, consider the following slight

modification of the preceding example.

Example 3

main program procedure p

A := 0'* if cond then

c^ll P'' A := A+2+sign(A-100)
,

print A; call p;

end; A := A-1;

end if;

return; end;

It is fairly easy to check that the purely functional approach

(which uses symbolic representation of the <i>'s) will diverge if

negative integers are included in the program domain. Intuitively,

3.18

this is due to the fact that it takes more than 100+k iterations

through Equations (3.2) to detect that (^

,

. ({(A,-k)}) = for

all k >_ 0.

Remark ; The data-flow framework required for constant propaga-

tion is in general not distributive. However, it can be shown that

the standard framework for constant propagation becomes distributive

if the program contains only one single variable and each propaga-

tion between adjacent basic blocks either sets the value of that

variable to some constant, or calculates the output value of the

variable from its input value in a one-one manner, as in the above

examples.

These examples indicate that if L is not finite, divergence

can actually occur. If L is infinite but F is bounded, then a sym-

bolic functional approach would converge, whereas an iterative

approach could still diverge if infinite space were needed to repre-

sent the (|)'s. Moreover, we have at present no simple criterion

which guarantees that F is bounded in cases in which L is infinite.

For these reasons, we will henceforth assume that L is a finite

semilattice. We can then summarize our results up to this point as

follows:

Corollary 3.5 ; If (L,F) is a distributive data-flow framework and

the semilattice L is finite, then the iterative solution of Equations

(3.2) converges, and together with Equations (3.3) yields the meet

over all interprocedurally valid paths solution (3.5).

Next we shall sketch an algorithm which implements the func-

tional approach for frameworks with a finite semilattice L. We

do not assume that any compact representation for elements of F is

3.19

available, but instead give purely iterative representation to the

functional approach, which avoids all functional compositions and meets

and also computes the ^'s only for values which reach some relevant

procedure entry during propagation.

Our algorithm is workpile-driven. The functions (p are repre-

sented by a two-dimensional partially defined map PHI: N* x l -» L,

so that for each n c N*, x c L, PHI(n,x) represents <p . . (x) , where
\ r , n J

p is the procedure containing n. The substeps of the algorithm are

as follows:

1. Initialize WORK := {(r,,0)}, PHI(rj^,0) := 0. (WORK is a subset

of N* X L, containing pairs (n,x) for which PHI(n,x) has been changed

and its new value has not yet been propagated to successor blocks of

n.)

2. While WORK 7^ 0, remove an element (n,x) from WORK, and let

y = PHI(n,x)

.

(a) If n is a call block in a procedure q, calling a procedure

p , then

(i) If z = PHI (e ,y) is defined, let m be the unique block

such that (n,m) e E , and propagate (x,z) to m. (By this

we mean: assign PHI(m,x) := PHI(m,x) /\ z, where undefined

PHI(ra,x) is interpreted as ^; if the value of PHI(m,x) has

changed, add (m,x) to WORK.)

(ii) Otherwise, propagate (y,y) to r . This will trigger

propagation through p, which will later trigger propagation

to the block following n in q (see below)

.

(b) If n is the exit block of some procedure p, i.e. n = e ,

find all pairs (m,u) such that m is a block following some call c

to p, and PHI(c,u) = x, and for each such pair propagate (u,y) to m.

3.20

(c) If n is any other block in some procedure p, then, for each

ni e Ep {n}, propagate (x,f
^^^^^^^

(y)) to m.

3. Repeat step 2 till WORK = 0. vVhen this happens, PHI represents

the desired <j) functions, computed only for "relevant" data values,

from which the x solution can be readily computed as follows:

X = A PHI(n,a), for each n e N*.
^ acL

Step 3 thus implies that in the implementation we have sketched

separate analysis to compute the x solution is unnecessary.

We omit analysis of the above algorithm, which in many ways

would resemble an analysis of the abstract approach. However, so

as not to avoid the issue of the correctness of our algorithm,

we outline a proof of its total correctness, details of which can

be readily filled in by the reader. The proof consists of several

steps

:

I. The algorithm terminates if L is finite, since each element (n,x)

of N* X L (which is a finite set) is added to WORK only a finite

number of times, because the values assumed by PHI(n,x) upon

successive insertions constitute a strictly decreasing sequence in

L, which must of course be finite.

II. We claim that for each n e n*,

(1) 2C 1 A PHI(n,a) .

acL

To prove this claim, we show, using induction on the sequence of

steps executed by the algorithm, that at the end of the i-th step,

x <_ A PHI''"(n,a), for each n e N*, a e L, where PHI""" denotes the
acL

value of PHI at the end of the i-th step. In executing the i-th

3.21

step, we propagate some pair (a,b) e L x L to some n e N*. By

examining all possible cases, it is easy to show, using the induc-

tion hypothesis, that x^ < b, from which (1) follows immediately.

III. In order to prove the converse inequality, it is sufficient,

by Theorem 3.4, to show that for each n c N* and q e IVP(r ,n)

,

fg(0) > A PHI(n,a). To do this, we first need the following
a c Xj

assertion:

(*) Let p be a procedure, n c N^ and a c L for which PHI(n,a) has

been computed by our algorithm. Then, for each path q e IVP (r ,n) ,

f (a) > PHI(n,a) .

Proof: We proceed by induction on the length of q. This is trivial

if the length = 0. Suppose that it is true for all p, n, a and q

with length less than some k > 0, and let q c IVP (r ,n) be of length

k. Write q = q|| (m,n) and observe that either (m,n) e E°, in which

case

^q^^^ = ^(m,n)(^q(^)) - f(m,n)(P«^(^'^)) lPHI(n,a)

(the last inequality follows from the structure of our algorithm)

,

or (m,n) is a return edge, in which case q can be written as

qil I
(c,rp.)

I Iq^l I
(m,n), where

q^^ e IVPQ(rp,c), q^ c IVP^ (r , ,m) ,

and we have

^q^^^ =
^q2^^qi^^^^

- ^q (PHI(c,a)) > PHI (m,PHI (c,a)) > PHI(n,a) .

IV. Now let q be any path in IVP(r^,n). Decompose q as in (3.1)

q ^l\\^^l'^p^m-"\\(c^,r^^)||qj+l. Then, using the monotonicity

of F, we have

3.22

f (0) > PHI(Cj_,0) = a^

%^W^^ -%^^1^ iPHI(c2,a^) = a^

(this is because our algorithm will propagate (a,, a,) to r , so
P2

that PHI(c2,a^) will eventually have been computed.) Continuing in

this manner, we obtain f (0) > PHI{n,a.), which proves III. This
^ 3

completes the proof of the total correctness of our algorithm.

Example 4

:

Consider Example 1 given above. The steps taken by our

iterative algorithm are summarized in the following table (where,

for notational convenience, we represent PHI as a set of triplets,

so that it contains (a,b,c) iff PHI(a,b) = c)

:

d to PHI WORK

{(r^^/O)}

{(Cj^,0)}

{(r2,l)}

{(C2,l)

}

{(C2/I) , (62,1)}

{(62,1) , (r2,0)

}

{(r2,0) ,(n^,0)}

{(n^,0) , (C2,0)}

{(nj_,0) , (C2,0), (e2,0) }

{(C2,0),(e2,0) , (e^,0)}

{(62,0) , (e^,0) , (n2,0)}

{(e^,0) , (n2,0) , (n2,l)}

{(e^,0) , (n2,0) , (n2,l)}

{(n2,0) , (n2,l) }

{(n2,l)}

Propagate

3.23

Finally we compute the x solution of Equations (3.2, 3.3) in step 3 of

our iterative algorithm as follows:

X = PHI(r, ,0) =
^1 ^

x^ = PHKc, ,0) = 1
^1 ^

X = PHI (n, ,0) = 1
"l ^

X = PHI(e, ,0) = 1
®1 ^

x^ = PHI(r2,0) A PHI(r2,l) =

x^ = PHI(C2,0) A PHI(C2,1) =

x^ = PHI(n2,0)A PHI(n2,l) =

Xg = PHI(e2,0)A PHI(e2/l) =

4.1

4. The call-string approach to inter-procedural analysiIS

We now describe a second approach to inter-procedural analysis.

This approach views procedure calls and returns in much the same

way as any other transfer of control, but takes care to avoid propa-

gation along non-interprocedurally valid paths. This is achieved by

tagging propagated data with an encoded history of procedure calls

along which that data has propagated. This contrasts with the idea

of tagging it by the lattice value attained on entrance to the most

recent procedure, as in the functional approach. In our second

approach, this 'propagation history' is updated whenever a call or a

return is encountered during propagation. This makes inter-

procedural flow explicit and increases the accuracy of propagated

information. Moreover, by passing to appropriate but simpler

encodings of the call history, we are able to derive approximate,

under-estimated information for any data-flow analysis, which should

nevertheless remain more accurate than that derived by ignoring

all inter-procedural constraints on the propagation. The fact that

this second approach allows us to perform approximate data-flow

analysis even in cases in which convergence of a full analysis is not

ensured or when the space requirements of a full analysis is prohibi-

tive, gives this second approach real advantages.

We will first describe our second approach in a somewhat

abstract manner. We will then suggest several modifications which

yield relatively efficient convergent algorithms for many important

cases

As before, we suppose that v;e are given an interprocedural flow

graph G, but this time we make an explicit use of the second

4.2

representation G* = (N*,E*,r,) of G. I.e., we do blend all pro-

cedures in G into one flow graph, but distinguish between intra-

procedural and inter-procedural edges.

Definition : A call string y is a tuple of call blocks c,,c^,...,c.

in N* for which there exists an execution path q c IVP(r^,n),

terminating at some n e N*, such that the decomposition (3.1) of q

has the form qilI(cT,r)
| |
q . .

. [
] (c .

,r)||q^,T where
-^ -^ P2 ^ 3 Pj+1 3+1

^i ^ ^^o^^D ''^i^
^°^ ^^^^ i 1 3 ^<^

q-i + i
s I^o^^r. '") • To show

fi J J- <-> Pj^-[_

the relation between q and y we introduce a map CM such that

CM(q) = y. By the uniqueness of the decomposition (3.1) (cf.

Lemma 3.1) this map is single-valued. y can be thought of as the

contents of a stack containing the locations of all call instruc-

tions which have not yet been completed, in an implementation that

uses such a device.

Let r denote the space of all call strings y corresponding

(in the above sense) to interprocedurally valid paths in G* . Note

that is G* is non-recursive, then T is finite; otherwise T will be

infinite, and as we shall soon see, this can cause difficulties for

our approach.

Let (L,F) be the data-flow framework under consideration. We

define a new framework (L*,F*), which reflects the inter-procedural

constraints in G* in an implicit manner, as follows:

r
L* = L , i.e. L* is the space of all maps from T into L. Since

we assume that L contains a largest "undefined" element Q, we can

identify L* with the space of all partially defined maps from T into

L - {n}. If r is finite, then the representation of L* as a space

of partially defined maps is certainly more efficient, but for

4.3

abstract purposes the first representation is more convenient.

If C c L* and y c T, then heuristically ^ (y) denotes that part of

the propagated data which has been propagated along execution paths

in CM"-^{y}.

If we define a meet operation in L* as a pointwise meet on r, i.

if for C^, ?2 e L*, Y e T, we define (K^/\ ^^^ {y) = C-l (y)A ?2 ^^^ '

then L* becomes a semilattice. The smallest element in L* is 0*,

where 0*(y) = for each y ^ F. The largest element in L* is Q*

,

where n* {y) = ^ for each y c T. Note that unless F is finite L*

need not be bounded. However, if ^-i ^ Co ^ • • • ^ ^ >_ ... is an

infinite decreasing chain in L*, its limit is well defined and can

be computed as follows: For each y c T, the chain

C, (y) ^ ^2^^"^ — '•• niust be finite (since L is bounded). Define

(lim C) (y) ss the final value of that chain. Obviously lim E =
n -^ ^n

n

A C and in the same manner it can be shown that A C_ exists for
n ^ n
any sequence [E,.}.^, in L*

.

In order to describe F* we first need to define a certain

operation in F

.

Definition ; o : F x E* -> F is a partially defined binary operation

such that for each y c T and (m,n) e E* such that CM~ {y) '^

IVP(r,,m) 7^ ^ we have

Y if (ni,n) e E

e.-

Y»(in,n) =

y| I
[m] if (m,n) is a call edge in E

(i.e. if m is a call block)

Y{1:#Y~1) (i.e. y without its last component)

if (m,n) is a return edge in E such

that y(#Y) is its corresponding call edge

in all other cases, y » (in,n) is undefined.

4.4

The following lemma can be proved in an obvious and straightforward

way.

Lemma 4.1 ; Let y c T, (m,n) c E*, q e lVI>{r^,m) such that CM(q) = y.

Then
y^^

= y o (m,n) is defined iff
qj_

= q | |
(ra,n) is in IVP(r,,n), in

which case CM(q^) = y .

The operation © defines the manner in which call strings are

updated as data is propagated along an edge of the flow graph.

Loosely put, the above lemma states that path incrementation is

transformed into o by the "homomorphism" CM.

Next, let (m,n) c E*, and let f
(j^ n)

^ ^ ^^ the data-propagation

map associated with (m,n) . Note that by our assiomptions f
(in,n)

i<^ if (m,n) c E , since in these cases m is a block containing

only a jump which in itself does not affect data attributes.

Define f*^^^^^) •* L* -^ L* as follows: For each ? c L*, y c T,

%,n) (^^ (^) = '

f
(in,n) ^^^^1^ ^ if there exists (necessarily

a unique)
y^^ such that

Yj_o(m,n) = y

.^ otherwise

The intuitive interpretation of this formula is as follows:

^*m,n) ^^^ represents information at the start of n which is obtained

by propagation of the information 5, known at the start of m, along

the edge (m,n) . For each Yj_ e r for which CCy^) is defined, we

propagate C (Y^) / the Yj_-selected data available at the start of m,

to the start of n in standard intra-procedural fashion (that is,

using
^f^^^^^)-

However, this propagated data is now associated

not with y^ but with y^ o (m,n) , which "tags" the set of paths ob-

tained by concatenating (m,n) to all paths which are "tagged" by

4.5

Y, / which lead to m, and along which ?(Y-i) has been propagated.

If Y-i o (ni,n) is undefined, then, by Lemma 4.1, C(Yi) should not be

propagated through (m,n) since no path which leads to m and is

tagged by y-i can be concatenated with (m,n) in a inter-procedurally

valid manner. In this case, we simply discard f ,_ , (5 (Yt)) as is
(ni,n) 1

indicated by the above formula.

F* is now defined as the smallest subset of maps acting in L*

which contains (f*/ v : (m,n) c E*} and the identity map in L* and

which is closed under functional composition and meet.

Lemma 4.2 : (a) If F is monotone in L, then F* is monotone in L*.

(b) If F is distributive in L, then F* is distributive in L*.

(c) If F is distributive in L, then for each (m,n) c E, f* , is
\m ,n

;

continuous in L*, that is/f* \ (.A ?,) = A f^_ \ (C,) / for each
(m,n) , k O (m,n) k

k ^ k

collection ^^5i,^v>i S L*«

Proof: It is easily seen that it is sufficient to prove (a) or (b)

for the set {f*/_ _^ : (m,n) e E*}, and this is straightforward from
vm , n^

the definitions.

To prove (c) , note that for each y c T for which there exists

Y-> c r such that Yi « (ni,n) = y we have

(m,n) k>l ^ ^^'^' k>l ^ ^

Buf since L is bounded, there exists k (y-,) such that the last

(m,n)

distributivity of f, ^equals

expression equals f/j^ j^nI /\ ^k ^'''l^
^ ' ^^^^^ ^^ turn, by the

l<k<.k^(Yi)

4.6

A ,_ f,„,n)'5k<Vl))
l<k<k^(Y^)

Thus f^^ „. {./\ Cv) > /\ ft„ „\ (Cu) • The converse inequality is
vni/n;],>i •'^ — k>l v"i/n; k

immediate from the monotonicity of f* ,. Q.E.D.
(m,n)

Remark ; Note that inter-procedural, as distinct from intra-

procedural, data-flow frameworks depend heavily on the flow-graph

(r itself may vary from one flow graph to another). Thus, for

example, there is no simple way to obtain F* directly from F without

any reference to the flow graph. This will not create any problems

in the sequel, and we argue that even in the intra-procedural case

it is a better practice to regard data-flow frameworks as graph

dependent.

We can now define a data-flow problem for G* , using the new

framework (L*,F*) , in which we seek the maximal fixed point solu-

tion of the following equations in L*

:

(4.1)

x* = {(X,0)} , where X is the null call string

X* = /\ f* (x*) , n e N* - {r, }
^ (ra,n)cE* ("''^^ ^ 1

We can show the existence of a solution to those equations

in the following manner: Let x*^°^ = {(X,0)}, x* ^°^ = CI* for allr^ n

n eN* - {r^}. Then apply Equations (4.1) iteratively to obtain

new approximations to the x* ' s . Let x*^"^' denote the i-th approx-
n

imation computed in this manner.

4.7

Since x* ^ - ^n ^°^ ^'^'^ n c N*, it follows inductively,

from the monotonicity of f* for each (in,n) e E*, that
vin f n j

^n - ^*n
"*"

^°^ ^-^-^ i >_ 0, n e N*. Thus, for each n c N*,

tx*
^i>o ^^ ^ decreasing chain in L* , having a limit, and we

define x* = lim x*^""" . It is rather straightforward to show that

^^n^'^ncN*
^^ indeed a solution to (4.1) and that in fact it is the

maximal fixed point solution of (4.1).

Having defined this solution, we will want to convert its

values to values in L, because L* has been introduced only as an

auxiliary semilattice, and our aim is really to obtain data in L

for each basic block. Since there is no longer a need to split the

data at node n into parts depending on the interprocedural flow

leading to n, we can combine these parts together, i.e. take their

meet. For each n e N*, we can then simply define

(4.2)
^A

= A x*(Y)

In justifying the approach that we have just outlined our first

step is to prove that x^ coincides with the meet over all inter-

procedurally valid paths solution y defined at the previous sec-

tion. This can be shown as follows:

Definition ; Let path^^(r^,n) denote the set of all execution paths

(whether interprocedurally valid or not) leading from r, to n e N*.

For each p = (r^ , S2 , . . . ,
Sj^

,n) e path2*(r^,n) define

% = ^\,n) ° ^\.^,s^) ••• °^(r^,S2) • ^°^ ^^^^ ^ ^ N* define

y* = /\{f*(x*): p c pathQ^(r^,n)}.

Since pathj^^ (rj^,n) is at most countable, this (possibly

infinite) meet in L* is well-defined.

4.8

Theorem 4.3 ; If (L,F) is a distributive data-flow framework then,

for each n c N*, x* = y*.
n n

Proof : (VJhich is quite similar to the proof of an analagous theorem

of Kildall for a bounded semilattice [KI]):

(a) Let n c N* and p = (r, ,3- / . • - » s, ,n) e path ^(r,,n). By (4.1)

we have

X* < f* , , (x*)S2 - (r3_,S2) r^^

X* < f* > (x*)

^3 ^^2'^3^ ^2

X* < f* , (x*)n - (Sj^,n) s^'

Combining all these inequalities, and using the monotonicity of

the f*'s we obtain x* < f * (x*), and therefore x* < y*.
n — p ' r, n — -'n

(b) Conversely, we will prove by induction on i that

x*^^^ > y* for all i > 0, n G N* .

n — ' n —

Indeed, let i=0. If np^r, then x*^^' = ^* > y* . On the other hand.In — 'n

the null execution path p- e path_^ (r, ,r,) , so that y* < f* (x*)
=

^ ^0 '^ G* ' 1' 1'' -'r, — p- r,

(0)
u X

X* = X* . Thus the assertion is true for i=0 . Suppose that it11 . .

is true for some i>0. Then x* ' = x* ' > y* , and for each
^1 ^1 - ^1

n c N* - {r, } we have

x
n
(i+l) = A f (x*^^^ > A f* (V*)

by the induction hypothesis. We now need the following

Lemma 4.4: For each (m,n) e E*, f* . (y*) > y*.
(m,n) -"m — -'n

4.9

Proof : Since f* , is distributive and continuous on L* (Lemma 4.2),

we have

= ^^^Un) (f;(^*^))= P ^ Path^* (ri,m)}

1 A^f5(^*)= q c path^,* {rj_,n)} = y*

Q.E.D.

Now returning to Theorem 4 . 3 it follows by Ler.ima 4.4 that

^n 1 / \ y* = y* (each n c N* is assumed to have pre-^ (m,n)eE* ^ n

decessors) . Hence assertion (b) is established, and it follows that

for each n £ N* x* = lim x*^^^ = A x*^^^ > y*, so that x* = v*

.

" j_
n ^^^ n — "n n -'n

Q.E.D.

Lemma 4.5 ; Let n e N*, p = (r^,S2 , • - . ,Sj^,n) e pathg^(r^,n) and

Y e r. Then f*(x*) (y) is defined iff p e IVP(r^,n) and CM(p) = y.

If this is the case, then f * (x*) (y) = f (0).
p r, ' ^ '

' p ^"' •

Proof: The proof is by induction on £ (p) , the length of p (i.e. the

number of edges in p) . If p is the null path, then n must be equal

to r^ . Moreover, CM(p) = A, p e IVP(r, ,r,) and f*(x*) = x* is^
'• l P ^1 P]_

defined only at A and equals = f (0) . Thus our assertion is true

if Jl(p) = 0.

Suppose that this assertion is true for all n e N* and

p e pathg^(r^,n) such that i {p) < X. Let n e N* and p =

(rj^,S2, . . . ,Sj^,n) be a path of length k in path^(r,,n). Let

1?2. ~ (^i'^2' * * *
'^k^ * ^^ definition, for each y e F we have

4.10

f*(x*) (Y)
p r ' *U,,,n)tf;/==J,'l<V)

(,
1^ „^ tf* (^t)(Yi)1 if there exists
(Sj^^n) p^ r^ 1

^_^ ^ J, 3^^j^ ^^^^

Y-, " (s,n) = Y
k

fl otherwise

Thus f * (x*) (y) is defined iff there exists y, c 7 such that
p r-| 1

Yi o (m,n) =Y and f* (x*) (Y,) is defined. By our inductive hypothesis,
-L Pr ^1 -^

this is the case iff p, e IVP(r,,s,), CM(p,) = Y-i and Yi « (s ,n) = y-

By Lemma 4.1, these last conditions are equivalent to p e IVP(r, ,n)

and CM(p) = Y«

If this is the case, then again, by our inductive hypothesis,

f* (x*) (Yn) = f„ (0) and so
Pi ^1 ^ ^1

f*(xJ^)(Y) =f(,^,n,lSi""l =S""

Now we can prove the main result of this section;

Theorem 4.6: For each n c N*, x' = y .
n -'n

Proof: Let y c V. By Theorem 4.3,

Q.E.D,

x*(Y) = {f*(x*) (Y) : p e pathg^(rj_,n) }

and by Lemma 4 .

5

= A{f (0): p c IVP(r, ,n) such that CM(p) = y)

Thus, by (4.2)

,

K" ^ ^A^^^ = Atfp(O): p e IVP(r^,n)} = y^
YGl

Q.E.D.

4.11

Corollary 4.7 : If the flow graph G* is non-recursive then the

iterative solution of Equations (4.1) that we have described will

converge and yield the desired meet over all interprocedurally

valid paths solution of these equations.

Proof : Convergence is assured since T is finite and hence L* is

bounded. Thus (L*,F*) is a distributive data-flow framework and

by standard arguments the iterative solution of (4.1) must converge

(cf. [KI] or [HE]). Therefore, Theorem 4.6 implies that the

limiting solution coincides with the meet over all paths solution.

Q.E.D.

The call-strings approach is of questionable feasibility if r

is infinite, i.e. if G* contains recursive procedures. Moreover,

just as for the functional approach, it is rather hopeless to convert

the call strings approach into an effective algorithm for handling

the most general cases of certain data-flow problems such as con-

stant propagation. However, as we shall see in the following sec-

tion, a fairly practical variant of the call strings approach can

be devised for data-flow frameworks with a finite semilattice L.

5.1

5 . Data-flow analyses using a finite semilattice

Let (L,F) be a distributive data-flow framework such that L is

finite. As we have seen, the functional approach described in

Section 3 converges for such a framework. We will show in this

section that it is also possible to construct a call-strings algo-

rithm which converges for these frameworks. As noted in the previous

section, convergence is ensured if T is finite. The idea behind our

modified approach is to replace r by some finite subset r^^ and allow

propagation only through inter-procedurally valid paths which are

mapped into elements of Tq. Such an approach is not generally

feasible since it can lead to an over-estimated (and unsafe) solution,

since it does not trace information along all possible paths. How-

ever, using the finiteness of L, v:a will show that T^ can be chosen

in such a way that no information gets lost and the algorithm comes

up with an acceptable solution.

We begin to describe our approach without fully specifying T,,

.

Later we will show how T^ should depend on L in order to guarantee

an acceptable solution.

Definitions : (a) Let r^ be some finite subset of T with the property

that if Y c Tq and y-j_ is an initial sxibtuple of y, then y, e T- too.

(b) For each n e N*, let IVP'(r ,n) denote the set of all

q e IVP (r^^ ,n)such that for each initial subpath q, of q (including q) ,

CM(q^) e Tq.

Yo(m,n) =

(c) We also modify the e operation so that it acts in r rather

than in T, as follows: If y e T^, (m,n) c E* such that there exists

q c IVP'(rj_,in) where CM(q) = y, then

''y if (in,n) e E°

yI I

[rn] if (m,n) is a call edge in E and

YlUm] e Tq

Y(1: #Y-1) if (in,n) is a return edge in E and

Y(#y) is the call block preceding n

undefined in all other cases

The only difference between this definition of o and the previous

one is that it will not add a call block m to a call string y

unless the resulting string is in Fq. When this is not the case,

information tagged by y will be lost when propagating through

(m,n)
, unless it is also tagged by some other call string to which

m can be concatenated. The following lemma is analogous to Lemma

4.1:

Lemma 5.1: Let y e T^, (m,n) e E*, q c IVP'(rj_,m) such that

CM(q) = Y- Then Y^ = Y (m,n) is defined iff q^ = q| |
(m,n) is in -

IVP'(rj^,n), in which case CM(q,) =
y-, .

We now define a data-flow framework (L*,F*) in much the same

way as in Section 4, but replace T by r . This leads to a bounded

semilattice L* = L and to a distributive data-flow framework

(L*,F*)

.

Hence, Equations (4.1) come to be effectively solvable by any

standard iterative algorithm which yields their maximal fixed

point solution. To this solution we will want to apply the

following final calculation, which is a variant of (4.2):

5.3

(5.1) x^ = A x*()

" YcK ^

Careful scrutiny of the analysis of the previous section re-

veals that the only place where the nature of r and the operation

o are referred to is in Lemma 4.1, and it is easily seen that if we

replace T and o by r^ and the modified o , throughout the previous

analysis, and also replace IVP(r^,n) by IVP'(r^,n) for all n c N*,

then by proofs completely analogous to those presented in Section 4

(but with one notable difference, i.e. that there is now no need to

worry about continuity of F* or infinite meets in L*, since L* is

now known to be bounded) , we obtain the following:

Theorem 5.2 : For each n e N*

^^ = Y'n = A{fp(0): p c IVP- (rj_,n)}

Up to this point, our suggested modifications have been quite

general and do not impose any particular requirements upon L or

upon r . On the other hand. Theorem 5.2 implies that x" is an over-
n

estimated solution, and as such is useless for purposes of our

analysis, as it can yield unsafe information (e.g. may suggest that

an expression is available whereas it may actually be unavailable)

,

unless we can show that x^ coincides with the meet over all inter-

procedurally valid paths solution of the attribute-propagation

equations which concern us. As will be shown below, this is indeed

the case if L is finite.

Definition: Let M > be an integer. Define T^ as the (finite)

set of all call strings whose length does not exceed M. r„M

5.4

obviously satisfies the conditions of part (a) of the previous

definition.

Lemma 5.3 ; Let (L,F) be a data-flow framework with a finite semi-

lattice, and let M = K{|l|+1) , where K is the number of call blocks

in the program being analyzed and |l| is the cardinality of L.

Let r = r... Then, for each n c N* and each execution path
o M

q c IVP(r,,n) there exists another path q' c IVP'(rj^,n) such that

f (0) = f . (0) •

q q

Proof : By induction on the length of q. If the length is then

n=r, and q is the null execution path, which belongs to both

IVP(r,,r,) and IVP'(r,,r,), so that our assertion is obviously true

in this case.

Suppose that the lemma is true for all paths whose length is

less than some k>_l , and let n e N*, q e IVP(r,,n) be a path of

length k. If q e IVP ' (r, ,n) then there is nothing to prove, so

assume that this is not the case, and let q be the shortest ini-

tial subpath of q such that CM(q) ^ T . Then q can be decomposed

according to (3.1) as follows:

q^ = qjl(c^,rp^)llq2|l ...
i I

(<=
j ' ^p ._^^H I qj+i

Hence j>M. Next, consider the sequence { (c ,a. ,B .)) •_-| / where,

for each i<j , a. = f of ... of (O) , and 3- is either U. if- 1 qi qi.i qi i

the call at c. is not completed in q (this call is certainly not

completed in q^) , or f^ (0) if the call at c. is completed in q,

and q. is the initial subpath of q ending at the return which

completes the call. Thus, for each call, the sequence records the

5.5

calling block, the value propagated along this path until the call,

and the value propagated until the corresponding return, if it

materializes. The number of distinct elements of such a sequence

is at most K(|l|+1) = M (we do not count n as an element of L; if

we did, then the bound can be reduced to K|l|). Since j>M, this

sequence must contain at least two identical components

(c. ,a. ,3-) and (c. ,a ,6), where i,<i-,<j.
^1 ^1 ^1 ^2 ^2 ^2 ^ ^

Now, if 0. =0. = fl, then neither of the calls c. , c. is
^1 ^2 ^1 ^2

completed in q. If we rewrite

q = q^lKc. ,r)||q'||(c ,r)llq'^ ^1 Pi+1 ^ ^2 Pi+1 -^

1 2

then it is easily seen that the shorter path q = q'II(c. ,r)\\'3.2
•1 ^i+1

is also in IVP(r,,n). Moreover

a^ = f , (0) = a = f o f (0)
J-1 ^1 ^2 ^2 ^1

so that

By our induction hypothesis there exists q' e IVP'(r,,n) such that

fgi (0) = fg{0) = f (0), which proves the lemma for q.

On the other hand, if 6. = B. fi ^, then it follows that both
^1 ^2

calls c. and c. are completed in q, with c. necessarily completed
^1 ^2 ^2

first. Thus we can write

1 2 2

(e ,n)||q'
Pi+1 ^1

1

5.6

where n. = n. is the block immediately following c . Again it
^1 ^2 ^1

follows that q = q,'
I I

(c. ,r
| |q!,| |

(e^ ,n.)
|

|q' is in
^ ^1 Pi+1 -^ Pi+1 ^1 ^

1 1

IVP(r,,n). Moreover

a. = f . (0) = a = f of (0)
^1 ^1 ^2 ^2 ^1

3,- =f„,of,of of,(o)=e. =f,cf,of,(o)
^1 ^4 ^3 ^2 ^1 ^2 ^3 ^2 "^1

from which one easily obtains f (0) = f (.0) , and the proof can now

continue exactly as before.

Q.E.D.

The main result of this section now follows immediately:

Theorem 5.4 : Let (L,F) be a distributive data-flow framework with

a finite semilattice L, and let T = T.,, with M as defined above.
O M

Then, for each n e N*, x" = y . That is, the modified algorithm
n n ^

described in the first pages of the present section yields a valid

inter-procedural solution.

Proof : Since IVP'{r, ,n) c lVP(r, ,n) we have x" > y . On the other
J. 1 n — n

hand, let q c IVP(r^,n). By Lemma 5.3 there exists q' e IVP'(r,,n)

such that f (0) = f , (0) > i^r,^^^' P ^ IVP'(r, ,n)} = x" . Hence

Yj^ = A tf (0) : q c IVP(rj_,n) } >_ x^.

Q.E.D.

Remark : Note that in Lemma 5 . 3 and Theorem 5.4 K can be replaced

by the maximal number K' of distinct calls in any sequence of

nested calls in the program being analyzed. In most cases this

gives a significant improvement of the bound on M appearing in

these two results.

5.7

We have now shown that finite data-flow frameworks are solvable

by a modified call-strings approach. However, the size of T can

be expected to be large enough to make this approach as impractical

as the corresponding functional approach. But in several special

cases we can reduce the size of F still further.
o

Definition : A data-flow framework (L,F) is called decomposable

if there exists a finite set A and a collection of data-flow

frameworks { (L ,F) } ., such that
a a aeA

(1) L = "1 T ^ ' ordered in a pointwise manner induced by the
acA

individual orders in each L .

a

(2) F c S F . That is, for each f e F there exists a collection
acA

{f'^} - where f c F for each a c A, such that for each
aeA

X = (x) - c L we have
a acA

In the cases covered by this definition we can split our data-

flow framework into a finite number of "independent" frameworks,

each inducing a separate data-flow problem, and obtain the solu-

tion to the original problem simply by grouping all the individual

solutions together.

For example, the standard framework (L,F) for available expres-

sions analysis is decomposable into subframeworks each of which is a

framework for the availability of a single expression. Formally, let

A be the set of all program expressions. For each aeA let

L = {0,1} where 1 indicates that a is available and that it is

not. Then {0,1} is isomorphic with L (which is more conveniently

5.8

represented as the power set of A) . It is easily checked that each

f c F can be decomposed as © f*^, where for each a c A f"^ e F ,

aeA ^

and is either the constant if a can be killed by the propagation

step described by f, f is the constant 1 if a is unconditionally

generated by that propagation step, and is the identity map in all

other cases. The frameworks used for use-definition chaining and

live variables have analogous decompositions.

A straightforward modification of Lemma 5.3, applied to each

(L(^/F^) separately yields the following improved result for decom-

posable frameworks:

Theorem 5.5 : Let (L,F) be a decomposable distributive data-flow

framework with a finite semilattice. Define M = K-max(|L 1+1)^
acA

and let T = T . Then, for each n e N*, y" = y .on n n

In the special case of available expressions analysis this is

certainly an improvement of Theorem 5.4, since it reduces the bound

on the length of permissible call-strings from K-0(4''^') to 9K.

For this analysis we can do even better since available expression

analysis has the property appearing in the following definition.

Definition : A decomposable data-flow framework {L,F) is called

1-related if, for each aeA, F^ consists only of constant functions

and identity fionctions.

This property is characteristic of situations in which there

exists at most one point along each path which can affect the data

being propagated. Indeed, consider a framework having this property,

let e<€A and let p = {s^fS^,- - . ,s^) be an execution path. Let j<k

be the largest index such that f /_ . is a constant function.
lSj_j^,Sj)

Then clearly f=f, ^ ^ ^-u ^ , ^^tt
p ^^i-l'^i^ ^ -^^ therefore also a constant. Hence i

5.9

this case the effect of propagation in L through p is independent of

the initial data and is determined by the edge (s._,,s.) alone.

If no such j exists, then f = id| , in which case no point along
P -^a

p affects the final data.

Note also that since each F^ is assumed to be closed under

functional meet, it follows that if (L,F) is 1-related then the

only constant functions that F;^ can contain are (the smallest

element in L) and 1 (the largest element) . Hence we can assume,

with no loss of generality, that L is the trivial lattice {0,1}

for each a c A. All the classical data-flow analyses mentioned

above have 1-related frameworks.

For frameworks having the 1-related property it is easy to

replace an execution path q by a shorter subpath q such that
a a

f^(0) = f_.(0) for some a e A. Indeed, to obtain such a q we have

A
only to ensure that q is also inter-procedurally valid and that the

last edge (s,s') in q for which f , i v is constant belongs to q.
I s / s)

This observation allows us to restrict the length of permissible

call strings still further. The following can then be shown:

Theorem 5.6 : Let (L,F) be a 1-related distributive data-flow

framework. Put T^ = T-„. Then, for each n c N*. x" = y .
o 3K .

' n -^n

The analysis developed in this section and the previous one can

be modified to deal with non-distributive data-flow problems. In

the non-distributive case. Theorems 4.6 and 5.2 only guarantee

inequalities of the form x' < y (resp. x" < v") for all n e N*.
n — -'n ' ^ n — -'n'

The arguments in this section show that under appropriate conditions

5.10

y" = y for each n e N*, so that assiiming these conditions Theorems
n n

5.4, 5.5, 5.6 all yield the inequalities x" <_ y for each n c N*.

Thus, in the non-distributive case, our approach leads to an under-

estimated solution, as is the case for intra-procedural iterative

algorithms for non-distributive frameworks (cf. [KUl]).

Example 5 : We return to Example 1 studied in Section 3. Since

available expressions analysis uses a 1-related framework, and

since the flow graph appearing in that example satisfies K = K' = 2,

we can take r = Tg, and apply Kildall's iterative algorithm [KI]

to solve Equations (4.1). The following table summarizes the steps

which are then performed (for notational

are written without enclosing parenthesis)

:

propagate from to

call strings

updated x* value

initially

r.

X* = {(X,0)}
^1

X* = {(A,l)}

X* = {(C,,l)}
^2 -^

X* = {(c, ,0)}
^2 ^

X* = {(Ct,1)}

'2 ^2 ^r ^ Uc^,l) , (c^C2,0) }

J- n- x* = n* (unchanged)

n. X* = {(X,l)}n

c* = {(c^,0) , (c^C2,0)}

f* = {(c^,l) , (c^C2,0) }

n.

n.

X* = {(X,l)}

c*^ = Uc^,0)}

workpile of
nodes from
which further

5.11

The next steps of the algorithm update x* ,x* ,x* ,x* in similar
^2 ^2 ^2 ^2

fashion, adding new entries with increasingly longer call strings,

up to a string Cj^C2C2C2C2C2 , but none of x* ,x* ,x* or x* is ever.... 1 ^1 ^1 ^1
modified. Final x* values for the blocks appearing in our example

are

""^2 " ""^2 " ^^^I'l)' (CiC2,0), (c^C2C2,0) ... (c^C2C2C2C2C2 , 0) }

^$2 " ^(^I'O)' (^2.^^,0), ... (c^C2C2C2C2C2,0)}

^n, " Uc^,0), (c^C2,0), ... (c^C2C2C2C2,0)} (^ x* , by the way)
z C2

An x" solution can now be easily computed, of course, this is

identical to the solutions obtained by previous methods.

Note that in this example there was no need to maintain call

strings of length up to 6 (length 2 would have sufficed) . However,

to derive correct information in the following example we need call

strings in which one call appears three times.

Example 2 ;

m.

5.12

The shortest path showing that a*b is not available at m' is

q = (r^^, c^, r^, n' , c\ r^, c^, r^, n^ , c^, r^, c^, r^, e^, m^,

®1' "^2' ^2' ^1' ®1' "^')' i" which c^ appears three times before

any of the calls in q is completed.

It is an interesting and challenging problem to find, for

a given flow graph, by some preliminary analysis, an optimal set

r^ of call strings needed to perform some particular interprocedural

data-flow analysis without losing information.

6.1

5. An approximative call-string approach

In this section we present a modification of the call-string

approach developed in Section 4, which yields a convergent algorithm

for any data-flow analysis, even though this algorithm may in

general fail to produce precisely the desired (meet over all

inter-procedurally-valid paths) solution. However, the output of

the algorithm to be presented will always be an underestimated (and

hence safe) solution. This compromise which is useful even when

L is finite, can make the call-string approach much more efficient.

Moreover, if L is infinite, F is not bounded or does not admit

compact representation then this modified approach is one of the

very few ways to perfrom inter-procedural analysis that we know.

Three things should be kept in mind when evaluating any

approximative approach to an interprocedural data-flow problem:

(a) Even in intraprocedural analysis, a meet over all paths solution

is itself an underestimation to the "true" run-time situation, since

many of the static execution paths which enter into such an analysis

may not be executable. (b) Many data-flow analyses whose semi-

lattice L is not finite are also not distributive (cf. [KUl] and

[SH]) so that even the intra-procedural iterative solution of the

data-flow equations may underestimate the meet over all paths solu-

tion, and, furthermore, (c) in non-distributive cases, the meet

over all paths solution may not be calculable (cf. [HE] for details).

By analyzing the abstract approach presented in Section 4, we

can easily see that the convergence (and efficiency) of the call

strings approach depends primarily on T. Convergence can be ensured

in general only if r is finite, and the smaller r is, the less

complex the algorithm becomes. This observation motivates the

6.2

approach that we propose in this section, whose general outline is

as follows.

Choose some finite (preferably rather small) set T which is

closed under a binary operation * and has a left identity with

respect to this operation. (In practice, we suggest that * be

associative and non-commutative, but the general description given

below will not assume this.) As in Section 4, let T denote the set

of all call strings. Choose an "encoding" map a which maps each

call block to some element of r. Using *, we can extend a to r by

putting a(Y) = a(c^)*a(c2)* "• *
^(<=i^

(computed left-to-right) for

each Y = (c^,C2, ,c.) c P. We also define a (A) to be w, the left-

identity of T.

Let (L,F) be any (not necessarily distributive) data-flow

framework. We will define a modified data-flow framework (L*,F*)

in essentially the same way as we did in Section 4, but with some

differences reflecting the nature of the approximative approach, as

detailed below.
/\

p
L* is defined as L . All the observations made in Section 4

concerning L* still apply, only now L* is bounded since T has been

assiomed to be finite.

As before, in order to define F*, we first define an updating

operation between encoded call strings and edges in E*. This

updating operation is now more complex than that defined earlier,

and in order to describe it we first introduce the following

Definition ; For each procedure p in the program being analyzed,

define ECS (p) = {a(CM(q)): q e IVP(r^,r)}. This is the set of all

encoded call strings which result from interprocedurally valid paths

6.3

reaching the entry of p.

These sets can be calculated by a rather simple preliminary

analysis based upon the following set of equations (where main

denotes the main program, which is assiimed to be non-recursive) :

ECS {main) = {w}

(6.1)

ECS (p) = {a*a(c) : c is a call to p from some procedure p' and

a e ECS(p')}, p 7^ main

After initializing each ECS(p) to , for all p f^ main, these equa-

tions can be solved iteratively in a fairly standard way. (The

iterative solution will converge because T is finite.) It is a

simple matter to prove that the iterative solution yields the sets

ECS(p) defined above.

Using the sets ECS we now define the following objects: For

each n c N*, a set of inter-procedurally acceptable paths leading

from the main entry ton, denoted by IAP(r, ,n); a modified set-

valued map CM from L^ IAP(r, ,n) to 2 , and a modified set-valued
^ ^ ncN*

roperation o: F x E* -> 2 . These recursive definitions are as follows

(a) The null execution path q is in IAP(r,,r,) and CM(q) = {w}.

(b) Let n e N* and q be an execution path leading to n. Write

q = qj^|l(m,n). Then q c IAP(rj^,n) iff q, e IAP(r,,m) and the set

A = u {a o(ra,n) : a e CM(q^) } is not empty, where, for each

a £ CM[IAP(r^,m)] and (m,n) e E* we define a o(m,n) by

a o (m,n)=

{a} if (m,n) e E°

{a*a(m)} if (m,n) is a call edge

{e e ECS(p) le*a(c) = a} if (m,n) is a return edge
corresponding to a call edge from a call block
c in procedure p.

6.4

In all cases we define CM(q) to be the set A introduced just above.

The intuitive meaning of these concepts can be explained as

follows: Since we have decided to record the actual call string by

a homomorphism CM of paths into a finite set T, it is inevitable

that we will also admit paths which are not in IVP (r n) . Thus

IAP(r3_,n) D IVP(r^,n), and will also contain paths which the encoding

CM cannot distinguish from valid IVP paths. In particular, some

returns not to their originating calls will have to be admitted.

6.4^

An inunediate consequence of the preceding definition, provable by

induction on the length of the execution path q, is as follows:

Lemma 6.1
: An execution path q is interprocedurally acceptable iff

CM(q) 7^ 0.

Having defined lAP, CM, and o, we next define F* in essen-

tially the same manner as in Section 4. Specifically, for each

(m,n)^ c E* we define ff^^^j : L* - L* as follows: For each C c L*,

a e r

%,n)^^)(<^) = ^^^{m,n)^^^''l^^'- « ^ ^i
o(m,n)}

where it is agreed that an empty meet yields «.

F* is now constructed from the functions f* , exactlv as(m,n) ^'^•-v--'-^ aa

before. The heuristic significance of this definition is the same

as in Section 4, only now the "tag" updating which occurs when

propagation takes place along an interprocedural edge involves

less extensive and precise information. The modified updating

operation that has just been defined can be both one-to-many and

many-to-one, possibilities which are both reflected in the above

formula. It is easy to verify that both monotonicity and distribu-

tivity are preserved as we pass from (L,F) to (L*,F*)

.

Next we associate with (L*,F*) the data-flow problem of

determining the maximal fixed point solution of the equations

X* = { (w,0)}

(6.2)

X* =
n

(m,n)cE*
"n ' - 0... 'tm,n) <-^' ' >*«*- '-!>

6.5

As previously, a solution of these equations can be obtained by

standard iterative techniques. Once this solution has been obtained

we make the following final calculation:

(6.3) ^n
= A x*(a)

" aer

The techniques of Section 4 can now be applied to analyze the

procedure just described. Theorem 4.3 retains its validity, if

re-stated as follows:

Theorem 6.2 : (a) If (L,F) is distributive then, for each n c N*

,

^n
" K - AUj(x*): p c path2^(r^,n)}.

(b) If (L,F) is only monotone then, for each n c N*, x* <_ y* .

Instead of Lemma 4.5, the following variant applies:

Lemma 6.3 : Let n e N*, p e path^^ (r, ,n) and a e F. Then

f*(x*) (a) is defined iff a c CM(p) , in which case f*(x*) (a) = fp(0).

Proof : By induction on the length of p. The assertion is obvious if

p is the null execution path. Suppose that it is true for all paths

with length < k and let p = (r. ,s_ , . . . ,s, ,n) e path ^(r,,n) be a

path of length k. Let p, = (r, ,3- / . • . /S,) . Then for each a c T

we have

Thus fp(x*) (a) is defined iff there exists a, e F such that

a e a, o (s, ,n) and f* (x*) (a,) is defined. By inductive hypothesis,
± n p, r, X

this is true iff there exists a^^ c CM(p,) and a e a. o (s, ,n) ,

6.6

A
and, by the definition of o and CM, this last assertion is true iff

a e CM(p) . Hence, applying the inductive hypothesis again,

f* (x*) (ci,) = f (0) , for all a^ appearing in the above meet, so

that this meet equals f, . [f (0)] = f (0)

.

k'^ ^1 ^
Q.E.D,

Remark ; As previously noted, and can be seen, e.g. from the proof

of the last lemma, use of an encoding scheme creates chances for

propagation through paths which are not interprocedurally valid.

However, our lemma shows that even if an execution path is encoded

by more than one element of Y , all of these "tags" are associated

with the same information, namely - f (0) . Thus information is

propagated correctly along each path, only more paths are now

acceptable for that propagation. These observations will be made

more precise in what follows.

Lemma 6.4 ; For each n e N*, IVP(r^,n) £ lAP(r^,n).

Proof : Let q e IVP(r-,n) for some n e N* . We will show, by indue-

tion on the length of q, that a{CM(q)) e CM(q) , so that, by Lemma

6.1, q e lAP (r, ,n)

.

Our assertion is obvious if q is the null execution path.

Suppose it is true for all paths whose length is less than some

k >_ 0, and let n e N*, q e IVP(r,,n) whose length is k. Write

q = q^||(m,n). By inductive hypothesis, a(CM(q,)) g CM(q,) . Now,

three cases are possible:

o y. ^
(a) (m,n) e E . In this case CM(q) = CMCq^^) and CM(q) = CM(q^)

so that a(Cl>l(q)) e CM(q) .

(b) {m,n) is a call edge. Then, by definition, CM{q) contains

6.7

0(CM{qj_)) *a(m) = a(CM(q))

(c) (in,n) is a return edge. Let (c'/r) denote the corresponding

call edge. Since q e IVP(r, ,n), q can be decomposed as

q'
I 1

(c'/r)
I Iq" 1 I

(in,n) , where q' cIVP(rj_,c') and q" c IVP^ (r ,m) .

It is evident from the definitions of the quantities involved that

that CM(q) = CM(q') and that CMCq^^) = CM{q ')
| [

(c ') . Hence

a(CM(q,)) = a(cM(q)) *a(c') . It thus follows that a(CM(q)) is a

member of the set (3 e ECS (p) |
B*a (c*) = a(CM(qj^))} which, by

definition, is a subset of CM(q)

.

Q.E.D.

We can now state an analog of Theorem 4.6:

Theorem 6.5 : (a) If (L,F) is a distributive data-flow framework

then, for each n e N*

Xj^ = A ^fp(O) - P e IAP(r3_,n)} < y^

(b) If (L,F) is only monotone, then, for each n e N*

^n - A ^fp(O) '' P ^ IAP(rj_,n) } < y^

Proof : (a) Let a e r. By Theorem 6.2 and Lemmas 6.1 and 6.3, we

have

x*(a) = /\{f^{x*) (a) : p e path^* (rj^,n) }

= Atfp(O): P c IAP(rj_,n), a e CM(p) }

Thus, by (6.3)

^n = A^ x*(a) = A {f (0): P c IAP(r, ,n)}
aer ^ P -L

By Lemma 6.4, this is

6.8

< A tf (0) : p c IVP(r^,n) } = y^

proving (a)

.

(b) Can be proved in a manner completely analogous to the proof of

(a), using part (b) of Theorem 6.2.

Q.E.D.

Thus (x } ,,^, is an under-estimation of the meet over all
n nci>I

paths solution (y } ^jg*- The degree of under-estimation depends on

the deviation of IAP(r,,n) from IVP(r,,n), and this deviation is in

turn determined by the choice of F, * and o. The most extreme

under-estimation results if we let IAP(r,,n) = path ^(r,,n) for all

n c N*, i.e. define T = (w), w*w = w, and let a map all calls to w.

If we do this then the resulting problem is essentially equivalent

to a purely intra-procedural- analysis, in which procedure calls

and returns are interpreted as mere branch instructions.

Another more interesting encoding scheme is as follows. Choose

some integer k > 1, and let r be the ring of residue classes modulo
.'V

k. Let ra > 1 be another integer. For each a,, a- c T, define

a,*a_ = m-a, + a_ (mod k) . Let a be any map which maps call blocks

to values between and m-1 (preferably in a one-one way) . In this

scheme, call strings are mapped into a base m representation modulo

k of some encoding of their call blocks. Note that if k=<» / i.e.

if we operate with integers rather than in modular arithmetic, then

r and r are isomorphic, with * corresponding to concatenation. If

k=m-' , for some j ^ 1/ and a is one-one and does not map any call

block to 0, then the encoding scheme just proposed can roughly be

described as follows: Keep only the last j calls within each call

6.9

string. As long as the length of a call string is less than j,

update it as in Section 4. However, if q is a call string of

length j, then, when appending to it a call edge, discard the first

component of q and add the new call block to its end. When append-

ing a return edge, check if it matches the last call in q and, if

it does, delete this call from q and add to its start all possible

call blocks which call the procedure containing the first call in q.

This approximation may be termed a call-string suffix approximation .

At present we do not have available a comprehensive theory of

the proper choice of an encoding scheme. Appropriate choice of

such a scheme may depend on the program being analyzed, and

reflects the trade-off between tolerable complexity of the inter-

procedural analysis and some desired level of accuracy.

References

[AU] Aho, A.V. and Ullman, J.D., "Principles of Compiler Design",

Addison-Wesley 1977.

[ALl] Allen, F.E., "Program Optimization", Annual Review of Auto-

matic Programming 5(1969), 239-307.

[AL2] Allen, F.E., "Interprocedural Data Flow Analysis", Proc.

IFIP(1974) North-Holland, 398-402.

[AL3] Allen, F.E. et al , "The Experimental Compiling System Project",

IBM Research Report RC-6718, Yorktown Heights 1977.

[AC] Allen, F.E. and Cocke, J., "A Program Data-Flow Analysis

Procedure", CACxM 19(1976) 137-147.

[BA] Barth, J.M., "An Interprocedural Data Flow Analysis Algorithm",

Proc. 4th ACM Symposium on Principles of Programming Languages

(1977) 119-131.

[CO] Cousot, P. and Cousot, R. , "Static Determination of Dynamic

Properties of Recursive Procedures", IFIP Conference on

Formal Description of Programming Concepts, Saint Andrews (1977)

[DM] DeBakker, J.W. and Meertens, L.G.L.T., "On the Completeness

of the Inductive Assertion Method", Journal of Computer and

Systems Science 11(1975) 323-357.

[GA] Gallier, J.H., "Semantics and Correctness of Nondeterministic

Flowchart Programs with Recursive Procedures", Fifth Interna-

tional Colloquium on Automata, Languages and Programming,

Udine, Italy(1978)

[GW] Graham, S.L. and Wegman, M. , "A Fast and Usually Linear

Algorithm for Global Flow Analysis", JACM 23(1976) 172-202.

[GR] Greibach, S.A., "Theory of Program Structure: Schemes,

Semantics, Verification," Lecture Notes in Computer Science

36(1975), Springer Verlag.

[HA] Harel, D., Pnueli, A. and Stavi, J., "Completeness Issues for

Inductive Assertions and Hoare ' s Method", CS Tech. Rep.,

Tel Aviv University 1976.

[HE] Hecht, M.S., "Flow Analysis of Computer Programs", Elsevier

North-Holland, New York 1977.

[HU] Hecht, M.S. and Ullman, J.D., "A Simple Algorithm for Global

Data Flow Analysis Problems", SIAM J. Computing 4(1975)

519-532.

[KUl] Kam, J.B. and Ullman, J.D., "Monotone Data Flow Analysis

Frameworks", Tech. Rep. 169, Princeton University, N.J. 1975

[KU2] Kam, J.B. and Ullman, J.D., "Global Data-Flow Analysis and

Iterative Algorithms", JACM 23(1976) 158-171.

[KI] Kildall, G.A., "A Unified Approach to Global Program Optimi-

zation", Proc. 1st ACM Symposium on Principles of Programming

Languages (1973) 194-206

[LO] Lomet, D.B., "Data Flow Analysis in the Presence of Procedure

Calls", IBM Research Report RC-5728, Yorktown Heights 1975.

[MA] Manna, Z., "Mathematical Theory of Computation", McGraw-Hill

1974.

[RO] Rosen, B.K., "Data Flow Analysis for Procedural Languages",

IBM Research Report RC-5948, Yorktown Heights 1976.

[SH] Sharir, M. , "A Few Cautionary Remarks on the Convergence of

Iterative Data-Flow Analysis Algorithms", SETL Newsletter 208,

Courant Institute 1978.

[TAl] Tarjan, R.E., "Iterative Algorithms for Global Flow Analysis",

Algorithms and Complexity, New Directions and Recent Results,

Academic Press 1976.

[TA2] Tarjan, R.E., "Solving Path Problems on Directed Graphs",

Tech. Rep. CS-75-512, Stanford University 1975.

NYU c .

2

Comp.Scl.Dept

.

TR-002
Sharir

Two approaches to Interprocedur
al data flow analysis.

cS.Sci.Dept. TR-002

Sharir

C.2

ig^.^ ^.-wc\ ^^'^

N.Y.U. Courant Institute of

Mathematical Sciences

251 Mercer St.

New York, N. Y. 10012

